Contents:
0. Review
 Dependent sources
 Amplifiers with dependent sources
 How to build a dependent source?
1. Operational amplifier: intro
2. An op-amp-based amplifier
3. Methodology to analyze op-amp circuits
4. Another example: inverting amplifier

Reading Assignment:
 Agarwal and Lang, Ch. 15 (§ § 15.1-15.3)

Handouts:
 Lecture 6 notes

Announcements:
 Please do pre-lab 4 before going to the lab…
0.1 Dependent Sources

• Types of dependent current sources:
 – Voltage-controlled current source:

\[
i_o = f(v_I)
\]

• Current-controlled current source:

\[
i_o = f(i_I)
\]
• Dependent voltage sources:
 – Voltage-controlled voltage source:

\[
\begin{align*}
 i_I &\quad \text{control port} \\
v_I &\quad \quad \quad \quad \\
 v_O &\quad \text{output port} \\
 \quad \quad \quad f(v_I) \\
\end{align*}
\]

\[v_O = f(v_I)\]

– Current-controlled voltage source:

\[
\begin{align*}
 i_I &\quad \text{control port} \\
v_I &\quad \quad \quad \quad \\
 i_O &\quad \text{output port} \\
 \quad \quad \quad f(i_I) \\
\end{align*}
\]

\[v_O = f(i_I)\]
How to build amplifiers?
0.2 Building an amplifier with a voltage-controlled current-source:

- Consider the following circuit:
• Analyzing the circuit:

\[v_O = V_S - R_L G v_I \]

• \(v_O \) linearly proportional to \(v_I \) \(\rightarrow\) no distortion

• Notice minus sign: output is out of phase from input \(\rightarrow\) not generally a problem

• In order to have amplification, need:

\[R_L G > 1 \]
How to build dependent sources?
0.3 Transistors... The MOSFET

- MOSFET = Metal-Oxide-Semiconductor Field-Effect Transistor
- MOSFET = three terminal semiconductor device
- In the MOSFET: Current through two terminals (source and drain) controlled by voltage in third terminal (gate).
- A modern microprocessor contains $\sim 10^8 - 3 \times 10^9$ MOSFETs
• i-v characteristics of 2N7000
Operational amplifiers

(The “logic gates” of the analog world)
1. Operational amplifier: Intro

Ideal op-amp is a *voltage-controlled voltage source*:

Equivalent circuit of ideal op-amp:
Properties of \textit{ideal} op-amp:

- Differential input
- Single-ended output
- Very large and constant voltage gain
- Infinite input resistance \rightarrow zero input current
- Zero output resistance \rightarrow can deliver or sink infinite output current at any output voltage
- No saturation (i.e. it can produce any voltage)
- Infinite bandwidth (i.e. it is infinitely fast)
Real op-amp:
- Gain is non linear
- Output signal limited by power supply voltages (saturation)
- Offset in output voltage
- Input and output resistances less than ideal
- Bandwidth limited
- Gain and offset are temperature dependent

A better model:
The op-amp we will use in the lab: LF356
Op-amp can be used to enable numerous circuits, with applications in fields such as:

- Signal processing
- Instrumentation
- Control
- Power
- Etc.

![Integrator](image1)

![Inverting amplifier](image2)

![Sample-and-hold circuit](image3)

![Current-to-Voltage converter](image4)

![Band-pass filter](image5)
2. An op-amp-based amplifier

- Consider a simple amplifier configuration:

 ![Op-amp diagram](image)

 Very large gain, but...
 - Output offset results in output even if no input signal
 - Output can easily saturate
 - Temperature sensitivity corrupts output voltage

 “Open loop” configuration has large gain but it is unstable.

Need to find a way to “pin” the output to ground when there is no signal at the input.
• Consider the following circuit:

![Circuit Diagram]

How does it work?

- Suppose with \(v_{IN} = 0 \) there is output offset \(v_O > 0 \)
 \(\rightarrow \) \(R_1/R_2 \) voltage divider results in \(v_+ > 0 \)
 \(\rightarrow \) \(v_+ - v_- < 0 \) drives \(v_O \) to zero

- Now assume no output offset.
 If \(v_{IN} > 0 \), then \(v_O > 0 \) such that \(v_O \) causes \(v_+ = v_- \)
 \(\rightarrow \) \(v_O/v_{IN} \) gain of this amplifier is less than \(A! \)

“Closed loop” configuration \(\rightarrow \) feedback path mitigates problems
How do we calculate the amplifier gain?

Equivalent circuit model:
\[v_+ = v_{in} \]

\[v_- = \frac{R_2}{R_1 + R_2} v_o \]

Then:

\[v_o = A(v_+ - v_-) = A(v_{IN} - \frac{R_2}{R_1 + R_2} v_o) \]

Solving for \(v_o \):

\[v_o = \frac{A}{1 + A \frac{R_2}{R_1 + R_2}} v_{IN} < A v_{IN} \]
Op-amp itself has “open-loop gain”: A
Op-amp amplifier has “closed loop gain”: G

Why would anybody do this?
→ Traded-off gain for robustness!

Amplifier gain is set by ratio of two resistance values:
→ gain largely independent of temperature
→ also corrected output offset problem
3. Methodology to analyze op-amp circuits

- Look again at non-inverting amplifier:

\[v_+ - v_- = \frac{v_O}{A} \approx \frac{G}{A} v_{IN} \]

Since \(A \) is very large, then \(v_+ - v_- \ll v_{IN}, v_O \)

In the scale of \(v_{IN}, v_O \),

\[v_+ \approx v_- \]

As \(A \to \infty \)

\[v_+ \to v_- \]
Method to analyze op-amp circuits:

- assume that $A \rightarrow \infty$
- assume that $v_+ = v_-$ $\Rightarrow i_+ = i_- = 0$
- work in large-signal domain

• Example: **non-inverting amplifier**

Voltage divider at output:

$$v_- = \frac{R_2}{R_1 + R_2} v_O$$

At input:

$$v_- = v_+ = v_{IN}$$

Combine these two equations and solve:

$$\frac{v_O}{v_{IN}} = 1 + \frac{R_1}{R_2}$$
• Interesting limit of non-inverting amplifier when $R_1=0$ and $R_2=\infty$:

$$v_o = v_{IN}$$

This is called “buffer” or voltage follower. Used to buffer stages in a system.

Assembly of a complete system much easier with adequate buffering of individual stages.
4. Another example: inverting amplifier

Consider:

\[v_- = 0 \Rightarrow i_1 = \frac{v_{IN}}{R_1} \]

\[i_- = 0 \Rightarrow i_2 = i_1 = \frac{v_{IN}}{R_1} \]

Then:

\[v_O = -i_2 R_2 = -\frac{R_2}{R_1} v_{IN} \]

And:

\[\frac{v_O}{v_{IN}} = -\frac{R_2}{R_1} \]
Summary

- **Op-amp =** device with:
 - Differential input
 - Single-ended output
 - Very large but unstable voltage gain
 - Very high input resistance
 - Very low output resistance
- “Open-loop” use of op-amp results in unstable operation
- In op-amp use, close loop and trade gain against stability
- **Analysis of op-amp circuits:**
 - Assume negligible voltage difference between two inputs
 - Assume negligible input currents