6.002 Recitation - Spring 2019
Farnaz Nirouei, Rm 12-5007, fnirouei@mit.edu

Outline
Inductors
Series and Parallel Connections
RL Circuits

Inductors

\[
\text{Flux density } \phi(t) = \frac{N N_i(t)}{A(t)}
\]

\[
\text{Flux linkage } \lambda(t) = N \phi(t) = N A(t) B(t)
\]

\[
\lambda(t) = \frac{\mu N^2 A(t) i(t)}{\ell(t)} \quad \text{where } L(t) = \frac{\mu N^2 A(t)}{\ell(t)}
\]

\[
\lambda(t) = L(t) i(t)
\]

Device law for time invariant inductor:

\[
V(t) = \frac{d\lambda(t)}{dt} = \frac{d}{dt} (L_i(t)) = L c i(t)
\]

\[
V(t) = L \frac{di(t)}{dt}
\]

\[
i(t) = \frac{1}{L} \lambda(t) = \frac{1}{L} \int V(t) dt
\]

Power and Energy

\[
P(t) = i(t) V(t) = i(t) \frac{d\lambda(t)}{dt} = i(t) L \frac{di(t)}{dt} = L \frac{di(t)}{dt}
\]

\[
W(t) = \int_{t_0}^{t} P(t) dt = \int_{t_0}^{t} L i(t) di(t) = \frac{1}{2} L i(t)^2 \bigg|_{t_0}^{t}
\]

\[
W(t) = \frac{1}{2} L i(t)^2 \quad \text{if } i(t_0) = 0
\]
Parallel and Series Connections

Series Combinations:

\[V_L = V_{L_1} + V_{L_2} = L_1 \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \]

\[i_L = i_{L_1} = i_{L_2} \]

Parallel Combinations:

\[\frac{di_L}{dt} = \frac{V_L}{L} = \frac{V_{L_1}}{L_1} + \frac{V_{L_2}}{L_2} = \left(\frac{1}{L_1} + \frac{1}{L_2} \right) V_L = \frac{V_L}{L} \]

Arguments for continuity of current:

Let \(t - t_0 = \epsilon > 0 \) and let \(\epsilon \to 0 \)

\[i_L(t) - i_L(t_0) = \int_{t_0}^t \frac{V_L(t')}{L} \, dt' = \frac{V_L \epsilon}{L} \quad \text{Assuming} \ V_L \text{does not change over} \ t \]

As \(\epsilon \to 0 \); \(\frac{V_L \epsilon}{L} \to 0 \) unless \(V_L \to \infty \)

Hence, \(i_L(t_0 + \epsilon) - i_L(t_0) \to 0 \) \(\Rightarrow \) \(i_L(t_0 + \epsilon) = i_L(t_0) \)

\[i_L(t) \text{ is continuous if} \ V_L \text{ is finite} \]
RL Circuits

Step response:

\[V_s(t) = V_R + V_L \]
\[V_L(t) = R i_L(t) + L \frac{d i_L(t)}{dt} \]

Define \(\tau = \frac{L}{R} \)

First order differential equation

Homogeneous solution = \(A e^{-t/\tau} \)

Particular solution = \(\frac{V_I}{R} \)

\[i_L(t) = A e^{-t/\tau} + \frac{V_I}{R} \]

Use initial condition to find \(A \rightarrow i_L(0)=0 \)

\[i_L(0) = A + \frac{V_I}{R} = 0 \]

\[A = -\frac{V_I}{R} \]

\[i_L(t) = -\frac{V_I}{R} e^{-t/\tau} + \frac{V_I}{R} = \frac{V_I}{R} \left(1 - e^{-t/\tau} \right) \text{ for } t \geq 0 \]

\[V_L(t) = L \frac{d i_L(t)}{dt} = V_I e^{-t/\tau} \]

\[V_R(t) = R i_L(t) = V_I \left(1 - e^{-t/\tau} \right) \]
What do the waveforms look like?

\[i_L(t) = \frac{V_I}{R} \left(1 - e^{-\frac{t}{\tau}}\right) \quad \text{for } t \geq 0 \]

\[V_R(t) = V_I \left(1 - e^{-\frac{t}{\tau}}\right) \]

\[V_L(t) = V_I e^{-\frac{t}{\tau}} \]

Note:
- Initially (short-time) \(i_L = 0 \) \(\Rightarrow \) \(L \) looks like an open circuit.
- Finally (long-time) \(\frac{di_L}{dt} = 0 \) \(\Rightarrow \) \(V_L = 0 \) and \(L \) looks like a short.